Javascript: Variables & Objects



var

The variable
statement
declares a
variable,
optionally
initializing it to
a value.

/] String
var greeting = “hello",;

/[l Number
var favoriteNum = 33:

/| Boolean
var ISAwesome = true;

// undefined
var foo;
var setToUndefined = undefined:;

// null
var empty = null;




const

- Similar to the var
statement*

- However, the
value cannot be
redeclared or
reassigned.

. ltis thus
CONSTANT

/] String

const greeting = 'hello’;
[/ Number

const favoriteNum = 33:
/| Boolean

const ISAwesome = true;

* but block scoped. More on this later...




const Errors

/[ Number
const favoriteNum = 33:

' favoriteNum = 23;

. Cannot change your mind once const initialised

- Reassignment prohibited - error if attempted.

const favoriteNum = 33;
TfavoriteNum = 23;
& P Uncaught TypeError: Assignment to constant variable.
at =anonymous=:3:13

>




let

The let statement
declares a block
scope local
variable, optionally
initializing 1t to a
value.

let x = 1;

it (x === 1) {
let x = 2;

console.log(x);

Iy

console.log(x);

/[ Number
let favoriteNum = 33;

favoriteNum = 23;

Always use const or let

Never use var - It can be
considered obsolete for our
purposes




Primitive Data Types

- 6 Primitive Data
Types

- JavaScript Is known
as a "weakly" typed
language.

- This means is that
when you create
variables and assign
them to values, you
do not have to
specify the type of
data you are working
with.

/[ String
const greeting = “hello™;

/[ Number
let favoriteNum = 33;

/| Boolean
const ISAwesome = true;

/l undefined
let foo;
let setToUndefined = undefined:;

/[ null
let empty = null;




Object Data Types

- Whereas primitive data typed variables hold individual values. e.qg:
.+ numbers
. strings
- boolean efc...
- ODbject types can hold more than one value. e.g.:
- a number AND a string.
- 2 numbers and a boolean and a string
- 3 strings and 2 numbers

- Objects are central to creating interesting and powerful programs



Creating an Object

Introduces a single
variable called ‘homer’.

- This Is an object with
two fields

. firstName, containing
‘homer’

lastName, containing
'simpson’

const homer ={
firstName: ‘homer’,
lastName: 'simpson’,

¥




Objects with Strings & Numbers

constbart={ . An object containing 2 strings
firstName: 'bart’,
lastName: 'simpson’, and a number.
age: 10,

I3

console.log(bart);

» { firstName: 'bart’, lastName: 'simpson' }



Anatomy of an Object

name of the object

_ const homer ={ | attribute
attributes firstName: 'homer’ (field) values
(flelds) of —rastName: 'simpson’, I for the homer
the object }_age: >0 | object

a specific attribute - called ‘age’



Objects in the Console

[ ﬂ Elements Console Sources Network Timeline Profiles Application

& W top v Preserve log Show all messages

const homer = {
firstName: 'homer',
LastMame: 'simpson’,

};

undefined

console. log({homer) ;

* O0bject {firstName: "homer", lastName: "“"simpson"}

undefined

- We can paste code directly in the console for
experimentation purposes

- Can be useful when learning or to clarify your understanding
about some syntax/feature



Objects with Functions

const marge ={
firstName: 'marge’,
lastName: 'simpson’,
age: 10,
sayHello() {
console.log('Hello from me!");

I3
J

marge.sayHello();




data
attributes
(fields) of
the object

a function
attribute of
the object

calling the
function

within the
marge
object.

name of the object

const marge ={
firstName: 'marge’,
tastName: 'simpson’,
age: 45,
sayHello() {
console.log('Hello from me!");

I3
%

console.log(marge);
console.log(marge.firstName);
console.log(marge.age);

@ @

marge.sayHello();

attribute
values for
the object

accessing
marge’s
flelds



this refers to the
‘current’ object.
Ned in this case

const ned =
firstName: 'ned’,
lastName: 'flanders’,
age: 45,
speak() {
console.log('How diddley do? says ' + this.firstName);
2
I3

ned.speak();

How diddley do? says ned




