
Javascript: Boolean Expressions

Boolean Logic

• Write conditional logic using boolean operators

• List all of the falsey values in JavaScript

• Use if/else and switch statements to include conditional
logic in your JavaScript code

• Explain the difference between == and === in
JavaScript

• Convert between data types explicitly in JavaScript

Conditional Logic

• An essential part of writing programs is being able to execute code
that depends on certain conditions. For example:

• You want the navigation bar on your website to look different
based on whether or not someone is logged in

• If someone enters their password incorrectly, you want to let
them know; otherwise, you want to log them in

• You're building a tic-tac-toe game, and want to know whether it's
X's turn or O's turn

• You're building a social network and want to keep person A from
seeing person B's profile unless the two of them are friends

• Notice that we used a === instead of =.

• Anytime that we use more than one equals operator (we can
either use == or ===) we are doing a comparison (comparing
values).

• When we use a single equals operator =, we are doing an
assignment (setting a variable equal to some value).

var instructor = 'Brenda';

// we begin with an "if" statement
// followed by a condition in ()
// and a block of code inside of {}
if (instructor === 'Brenda') {
console.log('Yes!');

} else {
console.log('No');

}

Always true

• In this version, the boolean expression will be true/false
depending on the value entered in ‘prompt’

var favoriteFood = prompt('What\'s your favorite food?');

if (favoriteFood === 'pizza') {
console.log('Woah! My favorite food is pizza too!');

} else {
console.log('That\'s cool. My favorite food is pizza.');

}

Difference between “==“ and “===“

• Two different operators for comparison: the double and triple
equals.

• Both operators check whether the two things being
compared have the same value, but there's one important
difference.

• == allows for type coercion of the values,

• === does not.

• To understand the difference between these operators, we
first need to understand what is meant by type coercion.

Type Coercion 1

• Add a number and a string.

• In a lot of programming
languages, this would throw an
error, but JavaScript is more
accommodating

• It evaluates the expression 5 +
"hi" by first coercing 5 into a
string, and then interpreting the
"+" operator as string
concatenation.

• So it combines the string "5" with
the string "hi" into the string "5hi"

5 + 'hi'; // '5hi'

Type Coercion 2

• JavaScript expects the
values inside of
parentheses that come
after the keyword if to
be booleans.

• If you pass in a value
which is not a boolean,
JavaScript will coerce
the value to a boolean
according to the rules
for truthy/falsey values
(more on this later)

if ('foo') {
console.log('this will show up!');

}

if (null) {
console.log('this won\'t show up!');

}

Type Coercion 3

• A very common way to
coerce a stringified number
back into a number.

• By prefacing the string with
the plus sign, JavaScript will
perform a coercion on the
value and convert it from a
string value to a number
value.

+'304'; // 304

“==“ Vs “===“ again

5 == '5'; // true
'true' == true; // false
true == 1; // true
undefined == null; // true

== loose === strict

5 === '5'; // false
'true' === true; // false
true === 1; // false
undefined === null; // false

• == allows for coercion while === doesn't.

• If you don't want to have to think about coercion in your
comparisons, stick to ===.

Comparison
Operators

var x = 4;
if (x <= 5) {
console.log('x is less than or equal to five!');

} else {
console.log('x is not less than or equal to five!');

}

Falsey Values

• Some values (aside
from false) are actually
false as well, when
they're used in a
context where
JavaScript expects a
boolean value

• Even if they do not
have a "value" of false,
these values will be
translated (or
"coerced") to false
when evaluated in a
boolean expression.

0
""
null
undefined
false
NaN // (short for not a number)

6 Falsey Values in Javascript

Logical Operators

If-Else

• Sometimes you may have more than two conditions to
check.

• In this case, you can chain together multiple conditions
using else

if (number >= 1000) {
console.log('Woah, thats a big number!');

} else if (number >= 0) {
console.log('Thats a cool number.');

} else {
console.log('Negative numbers?! Thats just bananas.');

}

Switch

• Another way to write conditional logic is to use a switch statement.

• While these are used less frequently, they can be quite useful when there
are multiple conditions that can be met.

• Notice that each case clause needs to end with a break so that we exit the
switch statement.

switch (feeling) {
case 'happy':
console.log("Awesome, Im feeling happy too!);
break;

case 'sa':
console.log('Thats too bad, I hope you feel better soon.');
break;

case 'hungry':
console.log('Me too, lets go eat some pizza!');
break;

default:
console.log('I see. Thanks for sharing!');

}

Modulus Operator

5 % 3 === 2 // true (the remainder when five is divided by 3 is 2)

var num = prompt('Please enter a whole number');
if (num % 2 === 0) {
console.log('the num variable is even!')

} else if (num % 2 === 1) {
console.log('the num variable is odd!')

} else {
console.log('Hey! I asked for a whole number!');

}

	Javascript: Boolean Expressions
	Boolean Logic
	Conditional Logic
	Slide Number 4
	Slide Number 5
	Difference between “==“ and “===“
	Type Coercion 1
	Type Coercion 2
	Type Coercion 3
	“==“ Vs “===“ again
	Comparison Operators
	Falsey Values
	Logical Operators
	If-Else
	Switch
	Modulus Operator

